Department of Mathematics

Summer 2019

(**Disclaimer**: Be advised that some information on this page may not be current due to course scheduling changes. Please view either the **UH Class Schedule page** or your Class schedule in **myUH** for the **most current/updated information**.)

GRADUATE COURSES - SUMMER 2019

SENIOR UNDERGRADUATE COURSES

This schedule is subject to changes. Please contact the Course Instructor for confirmation

Course	Section	Course Title & Session	Course Day & Time	Rm #	Instructor
Math 4377 - 01	11151	Advanced Linear Algebra I (Session #2: 06/03—07/03)	MTWThF, 10am—Noon	SEC 105	A. Haynes
Math 4378 - 01	12367	Advanced Linear Algebra II (Session #4:07/08—08/07)	MTWThF, 10am—Noon	F 162	A. Török
Math 4389 - 03	16578	Survey of Undergraduate Math (Session #4: 07/08—08/07)	MTWThF, 10am—Noon	SEC 203	D. Blecher

GRADUATE ONLINE COURSES

Course	Section	Course Title	Course Day & Time	Instructor
Math 5310	16560	History of Mathematics (Session #4: 07/08—08/07)	(online)	S. Ji
Math 5336	11662	Discrete Mathematics (Session #2: 06/03—07/03)	(online)	K. Kaiser
Math 5341	17811	Mathematical Modeling (Session #4: 07/08—08/07)	(online)	J. Morgan
Math 5382	14092	Probability (Regular Session: 06/03—07/24)	(online)	J. West
Math 5389	14463	Survey of Mathematics (Session #2: 06/03—07/03)	(online)	G. Etgen

GRADUATE COURSES (under construction)

Course	Section	Course Title	Course Day & Time	Rm #	Instructor
Math xxxx	TBD	TBD (TBD)	TBD, TBD	TBD	ТВА

-----Course Details-----

SENIOR UNDERGRADUATE COURSES

	Math 4377 - Advanced Linear Algebra I
Prerequisites:	
Text(s):	Linear Algebra, Fourth Edition by Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence
	Syllabus: Chapter 1, Chapter 2, Chapter 3, Chapter 4 (4.1-4.4), Chapter 5 (5.1- 5.2) (probably not covered)
	Course Description: The general theory of Vector Spaces and Linear
Description:	Transformations will be developed in an axiomatic fashion. Determinants will
	be covered to study eigenvalues, eigenvectors and diagonalization.
	Grading: There will be three Tests and the Final. I will take the two highest
	test scores (60%) and the mandatory final (40%). Tests and the Final are based
	on homework problems and material covered in class.
	<< back to top >>
	Math 4378 - Advanced Linear Algebra II
Prerequisites:	Math 4377 or Math 6308
Text(s):	Linear Algebra, 4th edition, by Friedberg, Insel, and Spence, ISBN 0-13- 008451-4
	The instructor will cover Sections 5-7 of the textbook. Topics include:
	Eigenvalues/Eigenvectors, Cayley-Hamilton Theorem, Inner Products and
Description:	Norms, Adjoints of Linear Operators, Normal and Self-Adjoint Operators,
	Orthogonal and Unitary Operators, Jordan Canonical Form, Minimal Polynomials.

Text(s):

Instructors notes A review of some of the most important topics in the undergraduate mathematics curriculum.

ONLINE GRADUATE COURSES

<<	back	to	top	>>
----	------	----	-----	----

	MATH 5310 - History of Mathematics
Prerequisites: Text(s):	Graduate standing No textbook is required. This course is designed to provide a college-level experience in history of mathematics. Students will understand some critical historical mathematics events, such as creation of classical Greek mathematics, and development of calculus; recognize notable mathematicians and the impact of their discoveries, such as Fermat, Descartes, Newton and Leibniz, Euler and Gauss; understand the development of certain mathematical topics, such as Pythagoras theorem, the real number theory and calculus.
	Aims of the course: To help students to understand the history of mathematics; to attain an orientation in the history and philosophy of mathematics; to gain an appreciation for our ancestor's effort and great contribution; to gain an appreciation for the current state of mathematics; to obtain inspiration for mathematical education, and to obtain inspiration for further development of mathematics.
Description:	On-line course is taught through Blackboard Learn, visit http://www.uh.edu/webct/ for information on obtaining ID and password.
	The course will be based on my notes. Homework and Essays assignement are posted in Blackboard Learn. There are four submissions for homework and essays and each of them covers 10 lecture notes. The dates of submission will be announced.
	All homework and essays, handwriting or typed, should be turned into PDF files and be submitted through Blackboard Learn. Late homework is not acceptable.
	There is one final exam in multiple choice.
	Grading: 40% homework, 45% projects, 15 % Final exam

Prerequisites:	Graduate standing
	Discrete Mathematics and Its Applications, Kenneth H. Rosen, seventh edition,
Text(s):	McGraw Hill, ISBN-13 978-0-07-288008-3, ISBN-10 0-07-288008-2. Instructor lecture note: Plus: on the Zermelo-Fraenkel Axioms and Equivalence of Sets.
	Syllabus: Chapter 1 (Logic and Proofs): 1.1, 1.3, 1.4 -1.6 , Chapter 2 (Sets and Functions), Chapter 5 (Induction): 5.1-5.3, Chapter 9 (Relations)
	The Zermelo Fraenkel Axioms; Equivalence of Sets in form of my notes.
Description:	Grading: Midterm is worth 40%, the final is worth 40% and Homework is worth 20%.
	For turning in Homework, students need to get the software program Scientific Notebook.

<< back to top >>

Prerequisites: Text(s):	MATH 5341- Mathematical Modeling Graduate standing. Three semesters of calculus or consent of instructor. TBD		
	Course Topics:		
Description:	 Basics of multivariable calculus and linear algebra Orthogonality, projection and visualization in higher dimensions Least squares approximation and multiple linear regression Stability theory associated with steady states and periodic solutions for continuous dynamical systems (systems of ODEs) Stability theory associated with steady states and periodic solutions for discrete dynamical systems Multiple applications 		
	Software : Students can use anything they want. I'll provide guidance and sample code using Excel, Matlab and Python.		
	The syllabus is available at this <u>link</u> .		

	MATH 5382 - Probability
Prerequisites:	Graduate standing and Two semesters of calculus and one semester of linear algebra
Text(s):	Probability: With Applications and R Edition: 1 by Robert P. Dobrow, ISBN : 9781118241257
Description:	Sample spaces, events and axioms of probability; basic discrete and continuous distributions and their relationships; Markov chains, Poisson processes and renewal processes; applications. Applies toward the Master of Arts in Mathematics degree; does not apply toward Master of Science in Mathematics or the Master of Science in Applied Mathematics degrees.
	mathematics of the master of science in Applied mathematics degrees.
	<< back to top >>
	<< back to top >>
	MATH 5389 - Survey of Mathematics
Prerequisites:	Graduate standing
Text(s):	Instructor's notes
	A review and consolidation of undergraduate courses in linear algebra,
Description:	differential equations, analysis, probability, and astract algebra. Students may not receive credit for both MATH 4389 and MATH 5389.

GRADUATE COURSES

<< back to top >>

	TBD (TBD) -TBD
Prerequisites:	Graduate standing.
Text(s):	TBD
Description:	TBD

<< back to top >>